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on statistical potentials for protein folding
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Statistical contact potentials and bead-spring models have been widely used for computational studies of
protein folding. However, there has been speculation that systematic error may arise in the contact energy
calculations when the statistical potentials are deduced under the assumption that the chain connectivity in
proteins can be ignored. To address this issue, we have performed molecular-dynamics simulations to study the
structure and dynamics of a simple liquid system in which the beads are either connected or unconnected with
springs. Results from the present study provide useful information for assessing the accuracy of the statistical
potentials for protein structure simulations.
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. INTRODUCTION Ej=-Tlnn, (1)

Empirical energy functions are widely employed to studyWherei andj denote amino acid types, is temperature in
the protein folding problem. Because of the complexity, ath€ unit of energy, and; is the normalized contact number.
detailed description of interactions in proteins at the atomisit 1S clear that the effective contact energy in &) is de-
tic level will require a large amount of computational work pef?de”t only on re5|due—re5|_due contact numbers or coordi-
load. Therefore, statistical potentigtk 2] based on the con- nation numbers for each. f9s'd“e-. . . .
cept of contact energyd] have been the most commonly The procedure. of (_jerlvmg st_at|st|cal potentials _reI|es on
“ " . . two basic approximationgl], which have been noticed by
used “knowledge-based” energy functions to provide ar : . . ;
simple coarse-grained description at the residue level i ho_mas and D_|I_[25_,2q.The first one is th_e assumption that
. . o 'l Rhain connectivity imposed by the protein sequence can be
many studies Of protein structure recognition and F?re_d'Ct'orheglected so that the statistics of contacts in a connected
[4-6] and protein folding simulation§7—10. The statistical - 5in ensemble is the same as in a liquid of disconnected
potentials also have been used to study protein dockingming acids. It was argued that for a large sample of pro-
[11,13, and to study designability of protein structures teins, the effects of specific sequences would be averaged out
[13-13. and characteristics of residue-residue contacts would reflect
In the “statistical potential” approach, the effective con-intrinsic differences of interactions among residugg.
tact energies between protein residues are estimated direcfyowever, even if this is correct, there still remains the ques-
from the numbers of residue-residue contacts observed in th#n of whether the pair distribution of a connected chain is
known protein structures by regarding them as statistical avthe same as a liquid of disconnected monomers. The second
erages in quasichemical approximation. This idea was firshpproximation in statistical potentials is the quasichemical
proposed by Tanaka and Scheraga in 191/6. Miyazawa  approximation or the Boltzmann distribution assumption, in
and Jernigan made an important step forward to include sowhich the residue-residue contact numbers meet the Boltz-
vent effects in statistical potentigls]. Meanwhile, statistical mann distribution lawEq. (1)]. Some evidence supports the
potentials for protein folding were developed in several othetise of a Boltzmann distribution, e.g., some protein substruc-
aspects, e.g., incorporating distance-dependent forces afi¢res have about the same frequencies as they would have in
multibody interaction§17—20, and adding terms to describe thermodynamic equilibrium. o _
dihedral angles and secondary structy@s-23. In ordgr_to see how a_ccurate are the_statlst!cal potentials
There are two essential steps in deriving the statisticafo” describing the energies of the protein folding problem,
potentials for proteins from the residue pair distributions. T"omas and Dill[25] devised a rigorous test using two-

First, the numbers of residue-residue contacts derived frorfi MeNsional2D) lattice models consisting of chains of wo

: . onomer type#d (hydrophobig and P (polar. They set up
protein crystal structures are compared with those expecte? database of the native structures, from which statistical

in a random mixture state. Next, a quasichemical approxima-otem.als ere extracted. Comparing the known true ener-
tion was employed to connect these normalized contact nuni-. s w Xt - ~omparing whn true er
bers with effective inter-residue contact energigsvia the gies Wlth the statistical energies, they found that statlst!cal
relation [24] potentials often correctly rank the orders of the relative

strengths of inter-residue interactions, but they do not reflect
the true underlying energies because of systematic errors
arising from the neglect of excluded volume effects. There is
*Corresponding author. Email address: wangcz@ameslab.gov also error in neglecting indirect correlation which changes
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the pair distribution of two given residues because of their
interactions with a common third residue. Such effects are % M
negligible in the low-density limi{e.g., gas phagebut can .

be significant in the liquid phase, where the density is not L{

low. Since the study of Thomas and Dill was done with a 2D

lattice model, it is not clear how serious these errors will be / Ly

in 3D structures more appropriate to real proteins. Although ‘\\
successful and unsuccessful applications of the “knowledge- K

based” statistical potentials to 3D and off-lattice protein . k

structure simulations have also been discussed extensively in
the literature[5,27-33, the possible error in the statistical
potentials for protein folding due to neglecting chain connec-
tivity has not been well addressed. to the cutoff distance. Therefore, the choice Ry, is not
In this work, we aim at understanding how good is thecrucial for our present purpose of study.
approximation of neglecting the chain connectivity in the
statistical potentials for 3D protein structure modeling. It has
been well known from polymer simulations that chain con- ) ) _ _
nectivity does play an important role in determining the The first model we used to investigate the effects of chain
structures and dynamics of polymdB8—35. Since most of ~Connectivity is a single-bead .modgl as illustrated in Fig. 1.
the statistical potentials for protein folding are derived usingThe 512 LJ particles as described in the reference system are
the residue pair correlation functions of proteins, our presengonnected by nearest-neighbor harmonic springs:;k(r
studies will be focused on understanding the effect of chairrrequ)®, Where r is the distance between particles and
connectivity on the pair correlation functiag(r) and coor-  r'equi(5.45 A represents its equilibrium distance. Such a
dination numbers of the residues in proteins through simulamodel is similar to the single-bead model for protein simu-
tion studies of a liquid system where the proteins are repretations widely used in the literature except that our beads are
sented by a bead-spring mod&6,37 and the residues are identical in character. The force constant is chosen td be
interacting with the Lennard-Jones potential. We will com-=0.5, 1.0, and 1.5, respectively, in order to investigate the
pare the pair correlation functiomgr) for the residue beads effects of the strength of the chain connectivity on the struc-
with and without chain connections. Although such a beadtures of the system.
spring model is a very simplified representation of proteins,
we believe that the e_ffects of chain connectivity obtain_ed C. Double-bead model
from such model studies should produce useful information ) o o o
for assessing the accuracy of statistical potentials for protein Chain connectivity in proteins is mainly imposed by the:
folding. Our paper is organized as follows. In Sec. I, we will Strong peptide bonds on backbone atoms. The side-chain
describe the models used in the simulations. More simulatiofSidues interact mostly through hydrophobic interactions

details including the choice of density and the correction toand hydrogen bonds. The protein structure is therefore better
g(r) due to excluded volume will be given in Sec. llI, fol- modeled with a double-bead model as illustrated in Fig. 2. In

lowed by the simulation results in Sec. IV. Finally, conclu- this double-bead model, the backbo@ig atoms are repre-
sions are given in Sec. V. sented by the set g&-type particles which are connected by
harmonic springgmain chain UAA:%k(r—ra)z, wherer,
=3.84 A is the distance betwed®), atoms in proteins. The

Il. MODELS force constank is set to be 0.5, 1.0, and 1.5, respectively, for
A. Reference system the same reason as discussed in Sec. Il B. For better repre-

_ i i . senting the backbone structure in protein, interactions among
Our reference system consists of 512 identical particles

interacting with the Lennard-Joné€ls]) potential,

T

The potential parameteesando are chosen to be 240 K and
5.0 A, respectively. The choice of=5.0 A will give the first
peak ofg(r) around 5.45 A, which is close to the average
residue contact distance in proteins. The cutoff distance of
the LJ interaction is chosen to be 12.0 A, which is found to
be large enough to give a smooth pair correlation function
g(r) in the liquid state. Although this cutoff distan¢@,,,) is
much larger than 6.5 A, which is commonly used as contact FiG. 2. Cartoon view of the double-bead model. The white balls
distance to determine the statistical potential for proteins, were theA-type beads and the gray balls are the side-cBatgpe
found that the pair correlation function is not very sensitivebeads.

FIG. 1. Cartoon view of the single-bead model.

B. Single-bead model
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the second and third neighbors of the main-ch&itype par- ) ' ) ' ) !
ticles are also included. These interactions are also modeled
by LJ potentials. The second-neighbor interactions(ladth
£=960 K ando=4.91 A) keep the dihedral angles between
the C, atoms close to that in real protein. The third-neighbor
interactions Lgd (with £=960 K ando=4.4 A) mimic the
hydrogen bonds in the-helix backbone environment. The
residues of the protein are modeled by the set of LJ particles
as described in the reference system. These side-chain par-
ticles (B-type particleg are also connected by a spring to the
correspondingA-type particles in the main chain, respec- T Ty — A =0
tively, i.e., UAB:Ek(r—rﬁ)2 (rp=3.0 A). Moreover, a hard- Density (1/nm3)

core repulsion,U e,=4e(a/r)*? (6=960 K,0=4.95 A), is

used for theA-A pair beyond the third neighbors along the  FIG. 3. Density profile of side-chain residues in proteins ob-
chain, and a weak LJ potentiall;=4s[(a/r)?-(a/1)®](e tained from our estimations as described in the text.

=48 K,0=5.0 A) is used for theA-B pairs that are not con-
nected by the spring. These interactions are illustrated in Fig.

2. In this study, 512-type and 51B-type particles are used The constraint of spring connectivity between particles in

. ur models is expected to have much more severe restric-
Zﬁggz[ytsﬁgnzesuns can be compared with those of the refeﬁ'ons on nearest-neighbor beads in comparison with the oth-

ers. We note that in the single-bead model, although the
second-neighbor beads along the chain are not connected di-

Protein Distribution

B. Correction to the pair correlation function

IIl. SIMULATION DETAILS rectly by covalent bonds, they are connected by springs to a
common atom between them. Therefore, the covalent bond-
A. Choice of density ing contributions from the second neighbor along the chain

| der t ‘ the simulati t the densit .__may also not be negligible. Such covalent bonding contribu-
N Order to perform the simufations at the density regimeq g 4re usually excluded when contact potentials are con-

that is relevant to protein, we need the information about the,cted. Our simulation results as will be discussed in the
resu_:iue d(_ansny in proteins. We have estimated such a denS'fMuowing indicate that exclusion of second neighbors along
profile using the protein structures from the Protein Datahe chain is necessary for the single-bead model in order to
Bank (PDB). We approximate the shape of a protein by anminimize the covalent bonding contributions. On the other
ellipsoid, and the residue masses are assumed to be umjand, in the double-bead model, the residiigseB beads
formly distributed within the ellipsoid. By calculating the are not directly connected by springs and the covalent bond-
moment of inertial,, 1, andl, of a protein along the three ing effects on the pair correlation function of the residue
principal axes and using the relationship betweenlfhé,  beads are much weaker. Thus only first neighbors due to the

andl, and axisa, b, andc of the ellipsoid, chain connections are omitted in our analysis for the double-
bead model. Note that in protein statistical potential model-
I, = %nm(bz +c), ing, the contacts due to nearest neighbors along the sequence

are also explicitly omitted in the estimation of effective con-
tact energies.
ly= _%,nn"(cz +ad), Because the excluded beads do occupy a certain volume,
such volume should also be deducted when these neighbors
L are excluded from the calculation of the pair distribution
I,=gnm(@ +b?) (3)  function, otherwise the density of the system will be under-
estimated. In other words, the pair correlation funcig(r)
the volume and thus the residue density of the protein can bebtained from the molecular-dynamigdD) simulations
estimated. In Eq(3), nmis the total mass of the protein. Our with neighbors along the chain excluded has to be renormal-
calculations were performed on 853 representative proteiized according to the excluded volume. As shown in Fig. 4,
structures selected from the PDB database. The densities sfippose the neighboring particles that are to be excluded
these proteins obtained from our analysis are plotted in Figishaded ballshave a hard-core radius of and are a dis-
3. We see from the plot that the densities of most of theancer’ away from the center particle located@tWhen the
proteins are between 4.0 and 6.0 residues/ithe average g(r) is calculated at a distancefrom the center particle, the
density of the proteins calculated from the plot is aboutarea of the intersection between the sphere of radiasd
4.8/nn?. We note thaf38] the protein volume obtained from the bodies of the excluded neighbors has to be deducted from
our method is very close to the envelope volumdich is  the overall sphere surface area oftd. The ratio of the
defined as van der Waals volume divided by packing densityeffective volume to volume of the whole system can be ap-
when we use the van der Waals volume from tlee UME proximated as
package calculatiofi39] and take the packing density to be “_ ,
0.75[40]. In our present study, we will perform simulations §r.r) = [4m = 200(r.r") )4 (4)
with densities of 4.0, 4.8, and 6.0/dpespectively. with
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FIG. 4. lllustration of the scheme for renormalizing the pair 09 ) 80 700 2.0
correlation functiong(r) due to the exclusion of neare@ir next r(A)

nearest neighbors along the chain.

FIG. 5. The correctedy(r) (solid lineg for the single-bead
r2+r'2- ré) model and double-bead model wki0.001 are compared with that
oy . of the unconnected LJ systefdotted line$. The reducedyy(r)

r (dashed linesare also plotted. Note thag(r) is clearly below the
(5) correctedg(r).

AQ(r,r") =271 -coso(r,r')] = 277(1 -

We see from Eqg4) and(5) that¢ is not only dependenton o o

r, but is also a function of’ the distance between the center k-independent as shown in Fig(®. These results indicate
particle and the excluded neighbors. Therefore, the correctdff@t the scheme we used is effective for removing the cova-
radial distribution functiorg(r) can be calculated using the €nt bond contributions. On the other hand, the effects of
reduced distribution functiogy(r) and the distribution func- SPring constank (and thus the effects of the covalent bpnd

tion of the neighboring particle&r’) obtained from the MD &€ much less pronounced in the double-bead model, as one
g gp o) can see from Figs.(6) and &d). Therefore, only the results

simulation, from the simulations wittk=1.0 will be shown in Sec. IV,
1 L although we have performed the simulations with several
9 =go(r) | e r’)f(r )dr, (6)  spring constantgk=0.5, 1.0, and 1)6
r 7
where C. Simulation procedure

MD methods have been extensively used in the past to
f(r') =9exc|(r')f’2/ f Goxc(F)r2dr. (7)  study a variety of physical systems. The MD technique has
r been fully documented elsewhefsee, for example, Refs.
) . o . [41,42). In the present simulation, most propertigther-
Gexclr) is the radial distribution function of the excluded ise specifieglare described in reduced units, in whiche,
neighboring beads which can also be obtained from the samghq kg/e are used as the units of length, energy, and tem-
MD simulation. Note that such a renormalization scheme Caerature, respectivelj4l]. The equations of motions of the
be applied to either first-neighbor correction in which theparticles were solved with a time step of 0.02 reduced units,
nearest neighbors along the chain are excluded or twossing the fifth-order predictor-corrector algoritH#g]. The
neighbor correction where both first and second neighborgarticles were confined to a cubic cell and subjected to peri-
along the chain are omitted. odic boundary conditions. The velocity-scaling method was
We further verify the reliability of this correction scheme (sed to control the temperature of the system. For each
by comparing they(r) of the free-particle system with those model described in Sec. I, we performed the MD simula-
of the chain-connected models in which the force constant ofions with three different densitiesp=4.0, 4.8, and
the springs is set to be very smgk=0.00]. In the double-  6.011/nn¥) and with three different temperatured
bead model, the interaction strength of; labtweenB-type  =0.83200 K), 1.25(300 K), and 2.5(600 K), respectively.
and A-type particles is also weakened to 0.003Figure 5 For each case, we run the simulation for over 20 000 steps to
shows that the correcteglr) for the chain-connected sys- ajiow the system to approach the thermal equilibrium state,
tems is very close to that of the free-particle system, as thejbllowed by 20 000 steps for statistical average of the prop-
should be, because the springs are very weak. In comparisogjties of interest. The structure of the system is monitored by
the uncorrected pair correlation functigg(r) is clearly be-  the pair correlation functiog(r) of the particles representing
low that of the free—particle system. This result indicates thathe residues of proteins_ The dynamica| properties of the sys-
the correction scheme we performesiith the optimizedr,  tem are also studied by calculating the time dependence of

of 4.2 A for single-bead two-neighbor correction and 3.5 Athe mean-square displacement of the residue particles,
for double-bead one-neighbor correctios adequate.

As shown in Fig. 6a), the raw data of pair correlation ) 1 5
functions (without exclusion and correctigrof the single- (RA(D)) = NE rit+ ) =ri(n)* ) . (8)
bead model are very sensitive to the spring constant. How- =t T
ever, after the exclusion and correction procedures as diur simulation temperatures are much higher than the esti-
cussed above, the correcteg(r) becomes almost mated triple point ofT=0.68 for the LJ potential system

N
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FIG. 6. Pair correlation functions as a function of spring conskarig) The raw datawithout exclusion and correctigprfrom the
single-bead modelb) correctedg(r) of the single-bead mode(r) the raw data from the double-bead model} correctedg(r) of the
double-bead model.

[44,45, therefore the systems in our simulations are in the At higher temperatures of=1.25 and 2.5, the distribu-

liquid state. tion of the particles in single-bead system becomes more
uniform. The first peak of(r) is now lower for single-bead
IV. RESULTS AND DISCUSSION chain as compared to that of the corresponding unconnected
) (k=0.0 system, as shown in Fig(y). The average coordi-
A. Single-bead model nation numbers(r) of the system are estimated by integrat-

We have investigated the effects of chain connectivity aing the g(r)[n=1,g(r)4mr?dr] over residue-residue dis-
different densities. In addition to the average density oftance from the origin tor;=8.22 A, which corresponds
4.8/nn?, we select both low and high densities from the approximately to the distance of the first minimum gif)
protein density distribution profiléFig. 3): 4.0/nn¥ for the  for the unconnected LJ system. The results show that at the
low-density regime and 6.0/nifior the high-density regime, average density4.8/nn¥) the coordination number of the
respectively. single-bead system is reduced by about 6% and 5% at

First, we discuss the chain effect at the average density: 1.25 and 2.5, respectively, as compared to that of the cor-
One of the noticeable differences in the results of the singleresponding unconnected LJ systems. We note that the tem-
dead model as compared to those of the unconnected systererature dependence of the chain effect on coordination
is that the chain connections in the single-bead model tend taumbers is not significant in this temperature range.
cause segregation of the particles in the system and result in At the lower density, the simulations show that the par-
an inhomogeneous distribution of the particles over theicles in the single-bead model have a stronger tendency to
simulation unit cell, particularly at lower temperatures. Theform an inhomogeneous liquid than they do at the average
simulation indicates that the particles at the densitydensity. The aggregation phenomena for low-density systems
(4.8/nn?) and low temperatur€).83 are not uniformly dis- have been well studief#6—48. The inhomogeneous struc-
tributed, but segregate into a more compact structure, leavingires are also observed in our low-density simulations at both
a hole in the simulation cell. In contrast, the system withoutT=0.83 and 1.25. At higher temperature ©f 2.5, the par-
chain connections tends to be more uniformly distributed aticle distribution appears to be uniform and the first peak of
the same density and temperature. As the results of particlg(r) is lower than that of the corresponding unconnected
segregation, the pair correlation functigfr) of the single-  system, as can be seen from Figa)7At T=2.5, the coordi-
bead model at low temperatu¢@.83 as shown in Fig. () nation number of the single-bead model is estimatesing
exhibits a higher first-neighbor pegkence larger coordina- r;=8.43 A) to decrease by about 6% with respect to that of
tion numbey in comparison with that of the unconnected the unconnected system, similar to that at an average density
system. of 4.8/nn¥. In comparison, the distribution of the particles at

061920-5



LU, WANG, AND HO

70

6.0
50

@

3 ;_Tfis_/\——"———_——

T v T v
Single-bead (P= 4.0/ne?) |

70

r(d)

6.0
590
— 40

=

%039
20
10

©

" T=083

Single-bead (p= 6.0/nm") |

O.B.

FIG. 7. Simulation results of the pair correlation function, with
two-neighbor corrections, of the single-bead mogdet 1.0 at the
various temperatures and densitidstted line indicates the uncon-

nected systein

the high-density regimé=6.0/nn?) is much more uniform

0

5.0

10.0 150 .0
rd)

PHYSICAL REVIEW E 69, 061920(2004)

70 T T

—

sol @) Double-bead (p= 4.0/om?) |
40 .
o g
30

20

LOF 1_083

08630 00 B0 200

1(A)
70 r T T
sol (b) Double-bead (p=4.8/nm?) |

5°45/\/\“

g()

085 50 100 150 70.0
r(R)

7.0 L} L) L)
© _ Double-bead (p= 6.0/um?) |

6.0
5.0
4.0

g@

30
20
1.0

L L L
085 50 100 150 0.0

r(A)
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at all three temperatures used in the simulations. As shown in _ _
Fig. 7(c), the peaks ofy(r) are found to be sharper at this Peak ofg(r) is lower than that of the corresponding uncon-
density than those at average and low densities. The firﬁected LJ SyStem at a.” thl’ee temperatures. The COOI’dInatlon

&°400 T T T
< T=125 [—k=00
= p=4.8hm? |--- k = 1.0 (Single-bead)
§ 300F -=-- k = 1.0 (Double-bead)] 4
a,
-g 200} 4
| -
75}
§ | o ecceemeemmmm=-
Q | A emmmm s ittt
z 0 - I - 1 1
0 5000 10000 15000 20000
Time Step

FIG. 8. Mean-square displacement of the residue particles as a

numbers ajp=6.0/nn? are calculatedusingr,;=7.92 A) to
be reduced by about 6%, 6%, and 4%Tat0.83, 1.25, and
2.5, respectively, with respect to unconnected systems.

The dynamical properties of the single-bead model are
studied by calculating the mean-square displacement of the
particles as a function of time. The result(&it)%) obtained
from the simulation is plotted in Fig. 8 and compared to that
of the unconnected system. It is found that both the value
and the slope of the mean-square displacement of the par-
ticles in the single-bead model are much smaller than those
of the corresponding unconnected system. This result indi-
cates that the diffusion processes of chain-connected par-
ticles are significantly hindered by chain connectivity.

B. Double-bead model

function of time steps in the unconnected, single-bead, and double- The pair correlation functiogy(r) of the side-chain resi-

bead systems.

dues in the double-bead model from our simulations is pre-
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sented in Fig. 9. In contrast to the single-bead model, we deomparison with that of the single-bead model as well as that
not find an inhomogeneous state in the double-bead model af the unconnected system. The results show that the mean-
the temperature and density regime we studied, although thsjuare displacement of the residues in the double-bead
inhomogeneous structures may appear at lower temperatufgodel is smaller than that of the single-bead model. Thus the
or lower density. resistance to the motions of the residues due to the chain
At average density4.8/nn?), the correctedy(r) of the  connectivity is slightly larger in the double-bead model as
side-chain residues in the double-bead model is again founé’ompared to the single-bead model.
to be almost independent of the spring force constant. The
first peak ofg(r) in the chain-connected system has a similar
height but narrower width as compared to that of the free-
particle system. The intensity between the first and second |n this work, the effects of chain connectivity on the pair
peaks in theg(r) is lower for the chain connected system ascorrelation functiorg(r) of a LJ liquid are studied. The simu-
shown in Fig. b). At different temperatures oT=0.83, |ation results show thai(r) of the chain-connected beads is
1.25, and 2.5, the coordination numbers of the side-chaifjfferent from that of the unconnected ones, leading to
residues are reduced by almost the same amount, 7%, S%maller coordination numbers for both directiingle-bead
and 5%, respectively. The reductions in the coordinationnode) and indirectly(double-bead modgkhain-connected
numbers are similar to those in the single-bead model.  resiques. By ignoring the chain connectivity, the error in
At low density (4.0/nn?), the chain effect org(r) is  counting coordination numbers or contact numbers would be
larger than that at the average den$iyB/nn?), as shownin  |arge for low-density and low-temperature systefesg.,
Fig. 9@). The first peak ofg(r) is lowered by a larger 13% for p=4.0/nn¥, T=0.83. But the error becomes much
amount, and the coordination numbers of the side-chain ressmaller when the density reaches the average value in the
dues are reduced by 13%, 9%, and 8% at three differengrotein density profildsee Fig. 3 i.e., 5% forp=4.8/nn¥,
temperatures with respect to those of unconnected systents=1.25. In recent years, there has been a controversy about
Therefore, the chain effects in the low-density systems ar@ow much error is introduced in statistical contact potentials
more than 1.5 times larger in comparison with the correfor proteins by neglecting the chain connectivity when the
sponding systems at the average density. It can be seen fropatentials are constructed. From our simulation results, we
Figs. 9a) and 9b) that at low and average densities, thefind that the coordination number is indeed affected at a
location of the first peak af(r) changes very little no matter moderate level by the chain connectivity in the double-bead
whether chain connectivity exists or not, indicating that themodel.
packing of the side-chain residues is dominated by the hy-
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