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Statistical contact potentials and bead-spring models have been widely used for computational studies of
protein folding. However, there has been speculation that systematic error may arise in the contact energy
calculations when the statistical potentials are deduced under the assumption that the chain connectivity in
proteins can be ignored. To address this issue, we have performed molecular-dynamics simulations to study the
structure and dynamics of a simple liquid system in which the beads are either connected or unconnected with
springs. Results from the present study provide useful information for assessing the accuracy of the statistical
potentials for protein structure simulations.
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I. INTRODUCTION

Empirical energy functions are widely employed to study
the protein folding problem. Because of the complexity, a
detailed description of interactions in proteins at the atomis-
tic level will require a large amount of computational work
load. Therefore, statistical potentials[1,2] based on the con-
cept of contact energy[3] have been the most commonly
used “knowledge-based” energy functions to provide a
simple coarse-grained description at the residue level in
many studies of protein structure recognition and prediction
[4–6] and protein folding simulations[7–10]. The statistical
potentials also have been used to study protein docking
[11,12], and to study designability of protein structures
[13–15].

In the “statistical potential” approach, the effective con-
tact energies between protein residues are estimated directly
from the numbers of residue-residue contacts observed in the
known protein structures by regarding them as statistical av-
erages in quasichemical approximation. This idea was first
proposed by Tanaka and Scheraga in 1976[16]. Miyazawa
and Jernigan made an important step forward to include sol-
vent effects in statistical potentials[1]. Meanwhile, statistical
potentials for protein folding were developed in several other
aspects, e.g., incorporating distance-dependent forces and
multibody interactions[17–20], and adding terms to describe
dihedral angles and secondary structures[21–23].

There are two essential steps in deriving the statistical
potentials for proteins from the residue pair distributions.
First, the numbers of residue-residue contacts derived from
protein crystal structures are compared with those expected
in a random mixture state. Next, a quasichemical approxima-
tion was employed to connect these normalized contact num-
bers with effective inter-residue contact energiesEij via the
relation [24]

Eij = − T ln nij , s1d

where i and j denote amino acid types,T is temperature in
the unit of energy, andnij is the normalized contact number.
It is clear that the effective contact energy in Eq.(1) is de-
pendent only on residue-residue contact numbers or coordi-
nation numbers for each residue.

The procedure of deriving statistical potentials relies on
two basic approximations[1], which have been noticed by
Thomas and Dill[25,26]. The first one is the assumption that
chain connectivity imposed by the protein sequence can be
neglected so that the statistics of contacts in a connected
chain ensemble is the same as in a liquid of disconnected
amino acids. It was argued that for a large sample of pro-
teins, the effects of specific sequences would be averaged out
and characteristics of residue-residue contacts would reflect
intrinsic differences of interactions among residues[1].
However, even if this is correct, there still remains the ques-
tion of whether the pair distribution of a connected chain is
the same as a liquid of disconnected monomers. The second
approximation in statistical potentials is the quasichemical
approximation or the Boltzmann distribution assumption, in
which the residue-residue contact numbers meet the Boltz-
mann distribution law[Eq. (1)]. Some evidence supports the
use of a Boltzmann distribution, e.g., some protein substruc-
tures have about the same frequencies as they would have in
thermodynamic equilibrium.

In order to see how accurate are the statistical potentials
for describing the energies of the protein folding problem,
Thomas and Dill[25] devised a rigorous test using two-
dimensional(2D) lattice models consisting of chains of two
monomer typesH (hydrophobic) andP (polar). They set up
a database of the native structures, from which statistical
potentials were extracted. Comparing the known true ener-
gies with the statistical energies, they found that statistical
potentials often correctly rank the orders of the relative
strengths of inter-residue interactions, but they do not reflect
the true underlying energies because of systematic errors
arising from the neglect of excluded volume effects. There is
also error in neglecting indirect correlation which changes*Corresponding author. Email address: wangcz@ameslab.gov
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the pair distribution of two given residues because of their
interactions with a common third residue. Such effects are
negligible in the low-density limit(e.g., gas phase), but can
be significant in the liquid phase, where the density is not
low. Since the study of Thomas and Dill was done with a 2D
lattice model, it is not clear how serious these errors will be
in 3D structures more appropriate to real proteins. Although
successful and unsuccessful applications of the “knowledge-
based” statistical potentials to 3D and off-lattice protein
structure simulations have also been discussed extensively in
the literature[5,27–32], the possible error in the statistical
potentials for protein folding due to neglecting chain connec-
tivity has not been well addressed.

In this work, we aim at understanding how good is the
approximation of neglecting the chain connectivity in the
statistical potentials for 3D protein structure modeling. It has
been well known from polymer simulations that chain con-
nectivity does play an important role in determining the
structures and dynamics of polymers[33–35]. Since most of
the statistical potentials for protein folding are derived using
the residue pair correlation functions of proteins, our present
studies will be focused on understanding the effect of chain
connectivity on the pair correlation functiongsrd and coor-
dination numbers of the residues in proteins through simula-
tion studies of a liquid system where the proteins are repre-
sented by a bead-spring model[36,37] and the residues are
interacting with the Lennard-Jones potential. We will com-
pare the pair correlation functionsgsrd for the residue beads
with and without chain connections. Although such a bead-
spring model is a very simplified representation of proteins,
we believe that the effects of chain connectivity obtained
from such model studies should produce useful information
for assessing the accuracy of statistical potentials for protein
folding. Our paper is organized as follows. In Sec. II, we will
describe the models used in the simulations. More simulation
details including the choice of density and the correction to
gsrd due to excluded volume will be given in Sec. III, fol-
lowed by the simulation results in Sec. IV. Finally, conclu-
sions are given in Sec. V.

II. MODELS

A. Reference system

Our reference system consists of 512 identical particles
interacting with the Lennard-Jones(LJ) potential,

ULJ = 4«FSs

r
D12

− Ss

r
D6G . s2d

The potential parameters« ands are chosen to be 240 K and
5.0 Å, respectively. The choice ofs=5.0 Å will give the first
peak ofgsrd around 5.45 Å, which is close to the average
residue contact distance in proteins. The cutoff distance of
the LJ interaction is chosen to be 12.0 Å, which is found to
be large enough to give a smooth pair correlation function
gsrd in the liquid state. Although this cutoff distancesRcutd is
much larger than 6.5 Å, which is commonly used as contact
distance to determine the statistical potential for proteins, we
found that the pair correlation function is not very sensitive

to the cutoff distance. Therefore, the choice ofRcut is not
crucial for our present purpose of study.

B. Single-bead model

The first model we used to investigate the effects of chain
connectivity is a single-bead model as illustrated in Fig. 1.
The 512 LJ particles as described in the reference system are
connected by nearest-neighbor harmonic springs:U= 1

2ksr
−requild2, where r is the distance between particles and
requils5.45 Åd represents its equilibrium distance. Such a
model is similar to the single-bead model for protein simu-
lations widely used in the literature except that our beads are
identical in character. The force constant is chosen to bek
=0.5, 1.0, and 1.5, respectively, in order to investigate the
effects of the strength of the chain connectivity on the struc-
tures of the system.

C. Double-bead model

Chain connectivity in proteins is mainly imposed by the
strong peptide bonds on backbone atoms. The side-chain
residues interact mostly through hydrophobic interactions
and hydrogen bonds. The protein structure is therefore better
modeled with a double-bead model as illustrated in Fig. 2. In
this double-bead model, the backboneCa atoms are repre-
sented by the set ofA-type particles which are connected by
harmonic springs(main chain) UAA= 1

2ksr −rad2, where ra

=3.84 Å is the distance betweenCa atoms in proteins. The
force constantk is set to be 0.5, 1.0, and 1.5, respectively, for
the same reason as discussed in Sec. II B. For better repre-
senting the backbone structure in protein, interactions among

FIG. 1. Cartoon view of the single-bead model.

FIG. 2. Cartoon view of the double-bead model. The white balls
are theA-type beads and the gray balls are the side-chainB-type
beads.
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the second and third neighbors of the main-chainA-type par-
ticles are also included. These interactions are also modeled
by LJ potentials. The second-neighbor interactions LJ2 (with
«=960 K ands=4.91 Å) keep the dihedral angles between
theCa atoms close to that in real protein. The third-neighbor
interactions LJ3 (with «=960 K ands=4.4 Å) mimic the
hydrogen bonds in thea-helix backbone environment. The
residues of the protein are modeled by the set of LJ particles
as described in the reference system. These side-chain par-
ticles (B-type particles) are also connected by a spring to the
correspondingA-type particles in the main chain, respec-
tively, i.e., UAB= 1

2ksr −rbd2 srb=3.0 Åd. Moreover, a hard-
core repulsion,Urep=4«ss / rd12 s«=960 K,s=4.95 Åd, is
used for theA-A pair beyond the third neighbors along the
chain, and a weak LJ potentialLJ1=4«fss / rd12−ss / rd6gs«
=48 K,s=5.0 Åd is used for theA-B pairs that are not con-
nected by the spring. These interactions are illustrated in Fig.
2. In this study, 512A-type and 512B-type particles are used
so that the results can be compared with those of the refer-
ence system.

III. SIMULATION DETAILS

A. Choice of density

In order to perform the simulations at the density regime
that is relevant to protein, we need the information about the
residue density in proteins. We have estimated such a density
profile using the protein structures from the Protein Data
Bank (PDB). We approximate the shape of a protein by an
ellipsoid, and the residue masses are assumed to be uni-
formly distributed within the ellipsoid. By calculating the
moment of inertiaIx, Iy, and Iz of a protein along the three
principal axes and using the relationship between theIx, Iy,
and Iz and axisa, b, andc of the ellipsoid,

Ix = 1
5nmsb2 + c2d,

Iy = 1
5nmsc2 + a2d,

Iz = 1
5nmsa2 + b2d s3d

the volume and thus the residue density of the protein can be
estimated. In Eq.(3), nm is the total mass of the protein. Our
calculations were performed on 853 representative protein
structures selected from the PDB database. The densities of
these proteins obtained from our analysis are plotted in Fig.
3. We see from the plot that the densities of most of the
proteins are between 4.0 and 6.0 residues/nm3. The average
density of the proteins calculated from the plot is about
4.8/nm3. We note that[38] the protein volume obtained from
our method is very close to the envelope volume(which is
defined as van der Waals volume divided by packing density)
when we use the van der Waals volume from theVOLUME

package calculation[39] and take the packing density to be
0.75 [40]. In our present study, we will perform simulations
with densities of 4.0, 4.8, and 6.0/nm3, respectively.

B. Correction to the pair correlation function

The constraint of spring connectivity between particles in
our models is expected to have much more severe restric-
tions on nearest-neighbor beads in comparison with the oth-
ers. We note that in the single-bead model, although the
second-neighbor beads along the chain are not connected di-
rectly by covalent bonds, they are connected by springs to a
common atom between them. Therefore, the covalent bond-
ing contributions from the second neighbor along the chain
may also not be negligible. Such covalent bonding contribu-
tions are usually excluded when contact potentials are con-
structed. Our simulation results as will be discussed in the
following indicate that exclusion of second neighbors along
the chain is necessary for the single-bead model in order to
minimize the covalent bonding contributions. On the other
hand, in the double-bead model, the residues(type-B beads)
are not directly connected by springs and the covalent bond-
ing effects on the pair correlation function of the residue
beads are much weaker. Thus only first neighbors due to the
chain connections are omitted in our analysis for the double-
bead model. Note that in protein statistical potential model-
ing, the contacts due to nearest neighbors along the sequence
are also explicitly omitted in the estimation of effective con-
tact energies.

Because the excluded beads do occupy a certain volume,
such volume should also be deducted when these neighbors
are excluded from the calculation of the pair distribution
function, otherwise the density of the system will be under-
estimated. In other words, the pair correlation functiong0srd
obtained from the molecular-dynamics(MD) simulations
with neighbors along the chain excluded has to be renormal-
ized according to the excluded volume. As shown in Fig. 4,
suppose the neighboring particles that are to be excluded
(shaded balls) have a hard-core radius ofr0 and are a dis-
tancer8 away from the center particle located atO. When the
gsrd is calculated at a distancer from the center particle, the
area of the intersection between the sphere of radiusr and
the bodies of the excluded neighbors has to be deducted from
the overall sphere surface area of 4pr2. The ratio of the
effective volume to volume of the whole system can be ap-
proximated as

jsr,r8d = f4p − 2DVsr,r8dg/4p s4d

with

FIG. 3. Density profile of side-chain residues in proteins ob-
tained from our estimations as described in the text.
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DVsr,r8d = 2pf1 − cosusr,r8dg = 2pS1 −
r2 + r82 − r0

2

2rr 8
D .

s5d

We see from Eqs.(4) and(5) thatj is not only dependent on
r, but is also a function ofr8 the distance between the center
particle and the excluded neighbors. Therefore, the corrected
radial distribution functiongsrd can be calculated using the
reduced distribution functiong0srd and the distribution func-
tion of the neighboring particlesfsr8d obtained from the MD
simulation,

gsrd = g0srdE
r8

1

jsr,r8d
fsr8ddr8, s6d

where

fsr8d = gexclsr8dr82YE
r

gexclsrdr2dr. s7d

gexclsrd is the radial distribution function of the excluded
neighboring beads which can also be obtained from the same
MD simulation. Note that such a renormalization scheme can
be applied to either first-neighbor correction in which the
nearest neighbors along the chain are excluded or two-
neighbor correction where both first and second neighbors
along the chain are omitted.

We further verify the reliability of this correction scheme
by comparing thegsrd of the free-particle system with those
of the chain-connected models in which the force constant of
the springs is set to be very smallsk=0.001d. In the double-
bead model, the interaction strength of LJ1 betweenB-type
and A-type particles is also weakened to 0.005«. Figure 5
shows that the correctedgsrd for the chain-connected sys-
tems is very close to that of the free-particle system, as they
should be, because the springs are very weak. In comparison,
the uncorrected pair correlation functiong0srd is clearly be-
low that of the free-particle system. This result indicates that
the correction scheme we performed(with the optimizedr0
of 4.2 Å for single-bead two-neighbor correction and 3.5 Å
for double-bead one-neighbor correction) is adequate.

As shown in Fig. 6(a), the raw data of pair correlation
functions (without exclusion and correction) of the single-
bead model are very sensitive to the spring constant. How-
ever, after the exclusion and correction procedures as dis-
cussed above, the correctedgsrd becomes almost

k-independent as shown in Fig. 6(b). These results indicate
that the scheme we used is effective for removing the cova-
lent bond contributions. On the other hand, the effects of
spring constantk (and thus the effects of the covalent bond)
are much less pronounced in the double-bead model, as one
can see from Figs. 6(c) and 6(d). Therefore, only the results
from the simulations withk=1.0 will be shown in Sec. IV,
although we have performed the simulations with several
spring constants(k=0.5, 1.0, and 1.5).

C. Simulation procedure

MD methods have been extensively used in the past to
study a variety of physical systems. The MD technique has
been fully documented elsewhere(see, for example, Refs.
[41,42]). In the present simulation, most properties(other-
wise specified) are described in reduced units, in whichs, «,
and kB/« are used as the units of length, energy, and tem-
perature, respectively[41]. The equations of motions of the
particles were solved with a time step of 0.02 reduced units,
using the fifth-order predictor-corrector algorithm[43]. The
particles were confined to a cubic cell and subjected to peri-
odic boundary conditions. The velocity-scaling method was
used to control the temperature of the system. For each
model described in Sec. II, we performed the MD simula-
tions with three different densitiesr=4.0, 4.8, and
6.0s1/nm3d and with three different temperaturesT
=0.83s200 Kd, 1.25 s300 Kd, and 2.5s600 Kd, respectively.
For each case, we run the simulation for over 20 000 steps to
allow the system to approach the thermal equilibrium state,
followed by 20 000 steps for statistical average of the prop-
erties of interest. The structure of the system is monitored by
the pair correlation functiongsrd of the particles representing
the residues of proteins. The dynamical properties of the sys-
tem are also studied by calculating the time dependence of
the mean-square displacement of the residue particles,

kR2stdl =K 1

N
o
i=1

N

ur ist + td − r istdu2L
t

. s8d

Our simulation temperatures are much higher than the esti-
mated triple point ofT=0.68 for the LJ potential system

FIG. 4. Illustration of the scheme for renormalizing the pair
correlation functiongsrd due to the exclusion of nearest(or next
nearest) neighbors along the chain.

FIG. 5. The correctedgsrd (solid lines) for the single-bead
model and double-bead model withk=0.001 are compared with that
of the unconnected LJ system(dotted lines). The reducedg0srd
(dashed lines) are also plotted. Note thatg0srd is clearly below the
correctedgsrd.
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[44,45], therefore the systems in our simulations are in the
liquid state.

IV. RESULTS AND DISCUSSION

A. Single-bead model

We have investigated the effects of chain connectivity at
different densities. In addition to the average density of
4.8/nm3, we select both low and high densities from the
protein density distribution profile(Fig. 3): 4.0/nm3 for the
low-density regime and 6.0/nm3 for the high-density regime,
respectively.

First, we discuss the chain effect at the average density.
One of the noticeable differences in the results of the single-
dead model as compared to those of the unconnected system
is that the chain connections in the single-bead model tend to
cause segregation of the particles in the system and result in
an inhomogeneous distribution of the particles over the
simulation unit cell, particularly at lower temperatures. The
simulation indicates that the particles at the density
s4.8/nm3d and low temperature(0.83) are not uniformly dis-
tributed, but segregate into a more compact structure, leaving
a hole in the simulation cell. In contrast, the system without
chain connections tends to be more uniformly distributed at
the same density and temperature. As the results of particle
segregation, the pair correlation functiongsrd of the single-
bead model at low temperature(0.83) as shown in Fig. 7(b)
exhibits a higher first-neighbor peak(hence larger coordina-
tion number) in comparison with that of the unconnected
system.

At higher temperatures ofT=1.25 and 2.5, the distribu-
tion of the particles in single-bead system becomes more
uniform. The first peak ofgsrd is now lower for single-bead
chain as compared to that of the corresponding unconnected
sk=0.0d system, as shown in Fig. 7(b). The average coordi-
nation numbersnsrd of the system are estimated by integrat-
ing the gsrdfn=er=0

r1 gsrd4pr2drg over residue-residue dis-
tance from the origin tor1=8.22 Å, which corresponds
approximately to the distance of the first minimum ofgsrd
for the unconnected LJ system. The results show that at the
average densitys4.8/nm3d the coordination number of the
single-bead system is reduced by about 6% and 5% atT
=1.25 and 2.5, respectively, as compared to that of the cor-
responding unconnected LJ systems. We note that the tem-
perature dependence of the chain effect on coordination
numbers is not significant in this temperature range.

At the lower density, the simulations show that the par-
ticles in the single-bead model have a stronger tendency to
form an inhomogeneous liquid than they do at the average
density. The aggregation phenomena for low-density systems
have been well studied[46–48]. The inhomogeneous struc-
tures are also observed in our low-density simulations at both
T=0.83 and 1.25. At higher temperature ofT=2.5, the par-
ticle distribution appears to be uniform and the first peak of
gsrd is lower than that of the corresponding unconnected
system, as can be seen from Fig. 7(a). At T=2.5, the coordi-
nation number of the single-bead model is estimated(using
r1=8.43 Å) to decrease by about 6% with respect to that of
the unconnected system, similar to that at an average density
of 4.8/nm3. In comparison, the distribution of the particles at

FIG. 6. Pair correlation functions as a function of spring constantk. (a) The raw data(without exclusion and correction) from the
single-bead model;(b) correctedgsrd of the single-bead model;(c) the raw data from the double-bead model;(d) correctedgsrd of the
double-bead model.
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the high-density regimesr=6.0/nm3d is much more uniform
at all three temperatures used in the simulations. As shown in
Fig. 7(c), the peaks ofgsrd are found to be sharper at this
density than those at average and low densities. The first

peak ofgsrd is lower than that of the corresponding uncon-
nected LJ system at all three temperatures. The coordination
numbers atr=6.0/nm3 are calculated(using r1=7.92 Å) to
be reduced by about 6%, 6%, and 4% atT=0.83, 1.25, and
2.5, respectively, with respect to unconnected systems.

The dynamical properties of the single-bead model are
studied by calculating the mean-square displacement of the
particles as a function of time. The result ofkRstd2l obtained
from the simulation is plotted in Fig. 8 and compared to that
of the unconnected system. It is found that both the value
and the slope of the mean-square displacement of the par-
ticles in the single-bead model are much smaller than those
of the corresponding unconnected system. This result indi-
cates that the diffusion processes of chain-connected par-
ticles are significantly hindered by chain connectivity.

B. Double-bead model

The pair correlation functiongsrd of the side-chain resi-
dues in the double-bead model from our simulations is pre-

FIG. 7. Simulation results of the pair correlation function, with
two-neighbor corrections, of the single-bead modelsk=1.0d at the
various temperatures and densities(dotted line indicates the uncon-
nected system).

FIG. 8. Mean-square displacement of the residue particles as a
function of time steps in the unconnected, single-bead, and double-
bead systems.

FIG. 9. Simulation results of the pair correlation function, with
one-neighbor corrections, of the double-bead modelsk=1.0d at the
various temperatures and densities(dotted line indicates the uncon-
nected system).
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sented in Fig. 9. In contrast to the single-bead model, we do
not find an inhomogeneous state in the double-bead model at
the temperature and density regime we studied, although the
inhomogeneous structures may appear at lower temperature
or lower density.

At average densitys4.8/nm3d, the correctedgsrd of the
side-chain residues in the double-bead model is again found
to be almost independent of the spring force constant. The
first peak ofgsrd in the chain-connected system has a similar
height but narrower width as compared to that of the free-
particle system. The intensity between the first and second
peaks in thegsrd is lower for the chain connected system as
shown in Fig. 9(b). At different temperatures ofT=0.83,
1.25, and 2.5, the coordination numbers of the side-chain
residues are reduced by almost the same amount, 7%, 5%,
and 5%, respectively. The reductions in the coordination
numbers are similar to those in the single-bead model.

At low density s4.0/nm3d, the chain effect ongsrd is
larger than that at the average densitys4.8/nm3d, as shown in
Fig. 9(a). The first peak ofgsrd is lowered by a larger
amount, and the coordination numbers of the side-chain resi-
dues are reduced by 13%, 9%, and 8% at three different
temperatures with respect to those of unconnected systems.
Therefore, the chain effects in the low-density systems are
more than 1.5 times larger in comparison with the corre-
sponding systems at the average density. It can be seen from
Figs. 9(a) and 9(b) that at low and average densities, the
location of the first peak ofgsrd changes very little no matter
whether chain connectivity exists or not, indicating that the
packing of the side-chain residues is dominated by the hy-
drophobic interactions, which in our case is the LJ potential
with an equilibrium distance of 5.45 Å.

It can be seen from Fig. 9(c) that at high density
s6.0/nm3d, the first peak ofgsrd is higher and much sharper
than that of the unconnected system. AtT=0.83, 1.25, and
2.5, the coordination numbers of the side-chain residues are
decreased by 6%, 5%, and 4% with respect to the reference
system, similar to those at the average density.

The mean-square displacement of the side-chain residues
versus time atT=1.25 andr=4.8/nm3 is plotted in Fig. 8 in

comparison with that of the single-bead model as well as that
of the unconnected system. The results show that the mean-
square displacement of the residues in the double-bead
model is smaller than that of the single-bead model. Thus the
resistance to the motions of the residues due to the chain
connectivity is slightly larger in the double-bead model as
compared to the single-bead model.

V. CONCLUSIONS

In this work, the effects of chain connectivity on the pair
correlation functiongsrd of a LJ liquid are studied. The simu-
lation results show thatgsrd of the chain-connected beads is
different from that of the unconnected ones, leading to
smaller coordination numbers for both directly(single-bead
model) and indirectly(double-bead model) chain-connected
residues. By ignoring the chain connectivity, the error in
counting coordination numbers or contact numbers would be
large for low-density and low-temperature systems(e.g.,
13% for r=4.0/nm3, T=0.83). But the error becomes much
smaller when the density reaches the average value in the
protein density profile(see Fig. 3), i.e., 5% forr=4.8/nm3,
T=1.25. In recent years, there has been a controversy about
how much error is introduced in statistical contact potentials
for proteins by neglecting the chain connectivity when the
potentials are constructed. From our simulation results, we
find that the coordination number is indeed affected at a
moderate level by the chain connectivity in the double-bead
model.
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